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ABSTRACT  
 
Geo-security, or location-based security service, provides 
authorization of persons or facilities based on their 
distinctive location information.  It applies the field of 
position navigation and time (PNT) to the provision of 
security.  Location-dependent parameters from radio 
navigation signals are quantized to compute a location 
verification tag or “geotag” to block or allow accesses by 
users.  Adequate quantization steps of location-dependent 
parameters should be selected to achieve reliable 
performance. 
 
Loran is chosen as a case study because of its beneficial 
properties for location-based security services.  The 
achievable performance and security of the system are 
determined by the quantity and quality of location-
dependent parameters.  By quantity, we mean the total 
number of different (independent) location-dependent 
measurements available.  By quality, we mean the amount 

of unique location-dependent information and its 
consistency provided by each parameter that can be used 
to generate a robust geotag.  It is desirable that the 
parameters be relatively insensitive to temporal changes 
that can weaken the uniqueness of the information.  As a 
result, reproducibility and repeatable accuracy are 
fundamental requirements for any location-based security 
service.  In practice, quantization temporal variations in 
location-dependent parameters significantly degrade 
system reliability. 
 
In this paper we introduce two new methods to generate 
strong geotags from noisy location data: fuzzy extractor-
based and classifier-based.  The performance of the 
different geotag generation algorithms are analyzed and 
compared; real data are applied to evaluate Loran getoag 
reliability and spatial discrimination. 
 
INTRODUCTION  
 
In this paper we introduce a security-oriented location-
based service and use Loran as a case study.   In general, 
location-based services require accurate estimation of 
position, e.g., latitude, longitude, and altitude, from 
location measurements.  We show that for a number of 
security applications there is no need to map location 
measurements into an accurate global position.  Loran, 
which operates in most of the northern hemisphere, has 
many advantages over satellite-based navigation systems 
for secure location-based service.  It is a high-power 
terrestrial signal that easily penetrates buildings and cities 
where line-of-sight signals are not feasible.  The 
stationary transmitters can result in many parameters that 
are solely location-dependent, but not time-dependent.  
The location-dependent parameters have high repeatable 
accuracy, which is essential to the robustness of derived 
geotags.  In addition, the modernized Loran or eLoran has 
a data channel that not only improves navigation 
performance but benefits the geo-security design.  The 
Loran location-based parameters are used to derive a 
geotag, which is a piece of information that allows or 
restricts access for security applications.  We provide 
examples of location-based security applications in two 
categories: block-listing and white-listing. 
 



• Block-listing: An example of a block-listing 
application is digital manners policy (DMP).  
Technologies for DMP [1] attempt to enforce 
manners at public locations.  A DMP-enabled cell 
phone can be programmed by the cellular service 
provider to turn off the phone's camera while inside a 
hospital, locker room, or classified installation.  Or 
the phone can be programmed to switch to vibrate 
mode while inside a movie theater.  Although some 
of these ideas maybe highly controversial [2], in this 
paper we focus only on the technical aspects of the 
application.  Using our geotag, one can build a list of 
geotags where the camera will be turned off.   The 
device downloads an updated list periodically, and 
when the device encounters a geotag in the blocklist, 
it turns the camera off. When the device leaves the 
blocked location, the camera is turned back on.  
Thus, digital manners are enforced without telling the 
device its precise location. 
 

• White-listing: An example of white-listing is 
location-based access control.  Consider a location-
aware disk drive:  the drive can be programmed to 
work only while in the secure data center; an attacker 
who steals the device will not be able to interact with 
it.  Location-based access control using encryption 
was studied by Scott and Denning [3] under the name 
Geoencryption.  Another white-listing application is 
Loopt, which provides geo-social networking 
services to users, enabling them to locate friends via 
their GPS-based cell phones.  To implement Loopt, a 
central server is required to compute geotags, 
perform matching algorithms, and notify users with 
SMS messages if they and their friends are in a given 
location.  Since the computed geotags cannot reveal 
users’ location information, the users’ privacy can be 
protected. 

 
A location-based security system must survive the 
following attack: the attacker owns the device and tries to 
make the device think it is somewhere else.  To defend 
against this threat, we make two assumptions.  First, a 
device that integrates a location sensor and geotag 
generation algorithm should be tamper-resistant.  If the 
device is not tamper-resistant, it can, be attacked, for 
example, by replacing the received location parameters 
with fake ones; by brute force attack; or by tampering 
with the tag database.  Second, the radio signal is self-
authenticated to allow users to verify the source of 
incoming signals.  A signal authentication protocol, 
Timed Efficient Stream Loss-tolerant Authentication 
(TESLA), is proposed on Loran.  We propose a means of 
implementing TESLA for authentication on navigation 
signals.  The implementation was tested on a West Coast 
Loran station in January, 2007 [4].  The theoretical 
analysis and experimental results of TESLA 

authentication performance were discussed previously in 
[5]. 
 
Additionally, it is desirable that geotags are reproducible; 
thus, location-dependent parameters should be relatively 
insensitive to temporal changes.  Reproducibility means 
that measurements at the same location at different times 
will always produce the same tag. Reproducibility is a 
fundamental requirement to derive a robust geotag.  
However, several types of errors presented in the radio 
frequency (RF) signals can degrade the performance of 
location-based security service.  This paper presents two 
new geotag generation algorithms.  The first method uses 
fuzzy extractor to improve the geotag reproducibility.  
The second method applies a pattern classification 
technique and develops classifier-based algorithms to 
generate strong geotags from noisy location data.  These 
geotag constructions can also be applied to other RF 
signals, such as satellite-based, Wi-Fi, DTV, and cellular 
signals, and non-RF signals such as infrared and 
ultrasound. 
 
The structure of the paper is organized as follows: We 
first describe system models of a location-based security 
system and the error patterns of location-dependent 
parameters.  This paper then defines fuzzy extractor, 
shows three different constructions of fuzzy extractors, 
and evaluates the geotag reproducibility based on the 
fuzzy extractor constructions.  We then provide a short 
review of pattern classification and classifiers.  Three 
different constructions of classifier-based geotags will be 
introduced.  We evaluate the spatial discrimination of 
computed geotags based on the classifiers in the 
subsequent sections.  This paper then summarizes and 
concludes with future directions of the research. 
 
 
SYSTEM MODELS  
 
Reproducibility and repeatable accuracy are desirable 
qualities in location-based security systems.  They allow a 
user to provide location-dependent parameters for the 
derived tag at calibration, and preserve the validity of the 
parameters at a later time for verification.   
 

 
Figure 1. Location-based security system 

 
Figure 1 illustrates how the system works.  Location-
dependent parameters from the surveyed locations are 



mapped into tags and stored in a central database in the 

calibration step.  At verification, the user matches his 
computed tag with the stored tag to validate the 
correctness of the user's location.   
 
The signal characteristics should be sufficiently consistent 
that when the user is ready to verify, measurements at the 
same location will yield the same previously generated 
tag.  Temporal variation reflects the instability or degree 
of scatter within a particular parameter at a given location, 
and increases the likelihood of mismatched tags.  The 
current geotag generation consists of three steps: 
extracting features or location-based parameters from the 
received location signals, quantizing the parameters with 
chosen step sizes, and mapping the quantized parameters 
into a binary string.  The binary mapping process can be 
done using a hash function, which is easy to compute, but 
difficult to invert. 
 
Performance Metrics 
 
The problem of deciding whether or not the computed 
geotag is authentic can be viewed as a hypothesis-testing 
problem.  The task is to decide which of the two 
hypotheses, H0 (accepting as an authorized user) or H1 
(rejecting as an attacker), is true for an observed location 
measurement.  A location-based security system can make 
two types of errors: 1) mistaking measurements from the 
same location as from two different locations, and 
accepting hypothesis H1 when H0 is true (called a false 
reject); and 2) mistaking the measurements from two 
different locations as from the same location and 
accepting H0 when H1 is true (called a false accept). Both 
false reject rate (FRR) and false accept rate (FAR) 
depend on the accuracy of the Loran receiver and the 
quantization step chosen to quantize location parameters.  
FAR only applies to white-listing applications, while FRR 
can be a performance metric for both block-listing and 
white-listing applications. 
 
FRR and FAR can be traded off against each other by 
varying the quantization step size.  A more secure system 

aims for low FARs at the expense of high FRRs, while a 

more convenient system aims for low FRRs at the 
expense of high FARs. 
 

 
Figure 3. Performance metrics: false reject rate and false 
accept rate 
 
Types of Errors 
 
First, we study the various types of errors presented in 
location data to achieve optimal generation of geotags.  
The most common error source is thermal and 
atmospheric noise.  Thermal noise, considered as white 
Gaussian, cannot be eliminated and always presents in all 
electronic devices and transmission media.  Loran 
atmospheric noise, caused by lightning, is non-Gaussian 
and dominant in low-frequency signals, and can be 
impulsive if the lightning is local.  Both thermal and 
atmospheric noises depend on the propagation path, the 
distance between transmitter and receiver, the quality of 
the receiver, and the local noise floor, etc.   
 
Another error source is bias.  An example of seasonal bias 
in Loran signals is Additional Secondary Factor (ASF), 
which is the additional delay in propagation time due to 
the signals traveling over a mixed path: e.g., seawater and 
land with various conductivities.  This error introduces 
large seasonal variations in time-of-arrival (TOA), as 
shown on the left of Figure 2.  The four stations, Fallon, 

 
Figure 2. TOA with zero means (left); TD with zero means (middle); TD quantization (right) 



George, Middletown and Searchlight, are from the Loran 
West Coast chain, Group Repetition Interval (GRI) 9940.  
Fallon is the master station of GRI 9940, while the 
remaining three are the secondary stations.  The monitor 
data were collected at Stanford University for a 90-day 
period to observe seasonal variations in Loran signals.  
The delay can be significant and can introduce a position 
error of hundreds of meters [6].  Thus ASF represents one 
of the largest error sources in Loran.  Many factors affect 
ASF, including soil conductivity, temperature, humidity, 
local weather, etc.  Therefore, ASF varies both temporally 
and spatially. This raises the difficulty of modeling ASF 
over CONUS.  The temporal component derives from all 
of the time-varying aspects, while the spatial component 
takes into account the non-uniform ground conductivity 
and topography [7].  Many methodologies have been 
developed to mitigate ASF.  In the previous study [8], we 
demonstrated two simple ideas: time difference and 
“previous day is today’s correction.”   Time difference 
(TD) is the difference in TOAs between secondary 
stations and the master station; thus, the master station is 
used as a reference to remove the ASF bias.  The second 
method is to use the previous day’s ASF measurements as 
today’s correction.  This requires that either the user 
receiver constantly monitors Loran data, or a reference 
station that is near the user broadcasts the previous day’s 
ASF as a correction via a data channel.  Neither method 
removes ASF completely.  The TD method has spatial 
decorrelation due to the different propagation paths of 
master and secondary stations.  The previous day’s 
correction suffers from the temporal decorrelation of 
ASF, because the previous day’s ASF is different from 
today’s ASF.  In this paper we use the TD method to 
mitigate partial ASF temporal variations, because it 
corrects more ASF biases, per our previous study [8].  
The TD measurements from four stations are plotted in 
the middle of Figure 2.  
 
In addition, quantization error, which is the difference 
between the value of a continuous parameter and its 
quantized value, can cause the system to fail to reproduce 
a correct geotag. The quantization error is usually 
correlated with the thermal noise, the atmospheric noise, 
and the seasonal biases discussed above.    We cannot 
guarantee that the measurements are always in the middle 
of the quantization grid.  In the worst case, the 
measurements lie on the boundary of the grid, as 
illustrated in the right plot of Figure 2.  The figure plots 
the TD measurements from Middletown with zero mean.  
The red dash lines represent the quantization grid 
boundaries.  Even though the quantization step is chosen 
to overbound signal variations due to random noise and 
seasonal biases, the quantization error increases the 
likelihood of failure to reproduce a geotag.  Figure 4 
depicts the false reject rate as a function of the 
quantization step in terms of the parameter standard 
deviation for the computed Loran geotag, which is 

derived from TD, ECD, and SNR of the four West Coast 
stations.  The curve does not monotonically decrease as 
the quantization step increases.  The non-monotonic 
relationship is a result of the quantization error. 
 
The above error types are considered to be Euclidean 
metric.  The last type of error is Hamming metric and 
comes from the operations of RF systems; for example, 
Loran stations might be offline due to maintenance or 
other implementation issues.   
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Figure 4. Loran geotag reproducibility 

 
 
FUZZY EXTRACTORS 
 
Background and Definitions 
 
The first approach of fuzzy extractor or error-tolerant 
cryptographic algorithm, called fuzzy commitment 
scheme, is proposed for biometrics by Juels and 
Wattenberg [9].  The scheme uses an error correcting 
code to handle Hamming distance.  More approaches for 
Hamming distance, set difference, and edit distance are 
introduced in [10].  It also introduces a different error 
tolerant algorithm, called secure sketch.   
 

 
 

Figure 5. Fuzzy extractor (top); Secure sketch (bottom) 
 
In this paper we follow the definition of fuzzy extractors 
in [10].  A fuzzy extractor works in two steps, illustrated 
in Figure 5.  During calibration step, one runs an 
algorithm Gen in input x∈M to generate a public value P 
and a geotag T, where M is a metric space of x.  The 
public value P is stored for future use.  An algorithm Rep 



is used to reproduce the tag T using P from noisy location 
vector x’.  Fuzzy extractors are information-theoretically 
secure, thus we can use them for security applications 
without introducing additional assumptions [10].  A 
secure sketch also consists of two steps.   A procedure SS 
produces s, called a sketch, using input x.  Then given s 
and x’ close to x, a procedure Rec can recover x.  The 
sketch should not reveal much information about x.  
Unlike fuzzy extractors, a secure sketch recovers the 
original input x from noise while a fuzzy extractor 
reproduces geotag T from noisy input. 
 
Definition 1.  A fuzzy extractor is a tuple (M, t, Gen, 
Rep), where M is the metric space with a distance 
function dis, Gen is a generate procedure and Rep is a 
reproduce procedure, which has the following properties: 

If Gen(x) outputs (T, P), then Rep(x’, P) = T, whenever 
dis(x, x’) ≤ t.  If dis(x, x’) > t, then there is no guarantee T 
will be outputted.    

Definition 2.  A secure sketch is a tuple (M, t, SS, Rec), 
where M is the metric space with a distance function dis, 
SS is a sketch generating procedure and Rec is a recover 
procedure, which has the following properties. 
 
Rec(x’, SS(x)) = x, if dis(x, x’) ≤ t.  The sketch s is to be 
made public.  We say the scheme is m-secure and the 
entropy loss of s is at most m.  H(x) – H(x|s) ≤ m.  H 
denotes the entropy of a random variable. 
 
In this paper we propose three fuzzy extractors based on 
Euclidean and Hamming metrics for inconsistent location 
parameters.   
 
Euclidean Metric Fuzzy Extractor 
 
Let location vectors be n-dimensional in metric space M. 
We consider the distance measure for location-based 
parameters is L∞ norm to be conservative.  We normalized 
the measure using Δ, and the distance is defined as 
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The basic idea of this fuzzy extractor is to adjust the 
offsets between the continuous parameters and the 
discrete ones after quantization.  The construction of the 
fuzzy extractor is shown as follows 
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If
2
1)',( <xxdis , then quantized location vector qx’ can be 

reproduced, that is, T’ = T.  This claim defines the 
reproducibility of geotag.  The quantization step Δ is a 
design parameter.  The bigger the step, the more errors 
can be tolerated using this fuzzy extractor. 
 
Shannon entropy is used to measure entropy loss of fuzzy 
extractors mathematically.  We estimate the entropy loss 
or the mutual information between the conditional H(x|P) 
and unconditional H(x) entropies.  They are statistically 
independent if the mutual information is zero.  Given x = 
qx + P, let x’ =  qx + P – δ, where δ is the Euclidean 
difference between x and x’ due to noises and biases.  Our 
objective is to determine an upper bound on H(x|P).  By 
using the definition of conditional entropy [11], we obtain 
 
 )()(  )|( δHxHPxH −= . (4) 
 
Thus, the entropy loss of public value P is H(δ).  It 
depends on the probability distribution of x and the 
quantization step Δ.  For the case n number of different 
location parameters, the total information leakage is 
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This equation assumes the location parameters are 
uniformly and independently distributed and provides an 
upper bound on the entropy loss.  In practice, the entropy 
loss is small in comparison with H(x).  The measured 
entropy in a geotag also quantifies the amount of 
uncertainty from an attacker’s point of view.  The entropy 
in a geotag computed from quantized parameters is equal 
to H(qx|P).  By the definition of qx, qx is independent of P; 
thus, P does not leak any information on qx.  Intuitively, 
this makes sense that knowing the offsets between x and 
Δx qx, one cannot figure out the user’s quantization level 
exactly without further information. 
 
Reed-Solomon Based Fuzzy Extractor 
 
The approach achieves robustness against noises and 
biases by making use of error-correcting codes to recover 
changes measured by Hamming distance.  Hamming 
distance, defined in Equation (6), measures the number of 
different elements between two strings or vectors.  In 
addition, this fuzzy extractor deals with the problem 



caused by offline transmitters.  Geotag can be reproduced 
even when there are missing parameters.  
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We use Reed-Solomon (RS) error-correcting code to 
construct a fuzzy extractor to recover the changes of the 
quantized location parameters.  Reed-Solomon coding is a 
well known forward error correction coding method that 
potentially for burst errors [12].  The key idea of the 
construction is to first create a polynomial by encoding 
the secrets, which is the tag in location-based security 
system.  The next step is to project the quantized location 
parameters on the polynomial and randomly create chaff 
points to hide the polynomial.  At last, the secrets can be 
recovered from the chaff points with adequate location 
parameters.  The detailed construction is described as 
follows.   
 
Calibration.  Given qx = {q1,…,qn},  
 
1. A secret message is computed from a random 

generator. 
2. The secret message can be hashed to get a geotag T. 
3. The geotag T is encoded to a vector c using Reed-

Solomon code.  The vector c has a size of n.   The RS 
encoder (n, k) is chosen based on design criteria that 
the total number of errors t can be corrected is 
determined by (n-k)/2.   

4. Construct mapping matrix or public information P.  P 
has a size of N×n, where N is the number of 
quantization levels of location parameters and 
determined by chosen quantization steps.  For each 
column of P, locate the element of vector c based on 
each quantized location parameter.  For instance, if qi 
= 20, then P(20, i) = ci.  Figure 6 illustrate the 
formation of mapping matrix P.  Populate the rest of 
the matrix using random numbers.  This mapping 
matrix is then saved for future use. 
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Figure 6.  Mapping matrix construction 

 
Verification.  Given qx’ is a location parameter vector that 
has t or less than t elements different from qx.   
 
1. Given the mapping matrix P generated previously. 
2. Obtain a vector c’ using P and qx’.  If qx’ and qx are 

identical, c’ has the same elements as c.  If attackers 
have no information on location parameters qx, it is 
difficult to guess a vector c’ that satisfies dis(c, c’) ≤ t 
due to the large search space of mapping matrix.  
Such a search is equivalent to brute-force attacks.    

3. Apply Reed-Solomon decode to compute T’ from c’.  
If dis(c, c’) ≤ t, the secret message can be recovered 
correctly; otherwise, the output would not be the 
same as T.   
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This approach makes use of the property of Reed-
Solomon codes to tolerant t errors in the quantized 
location parameters.  It is not fault-detective since users 
would not be able to find out whether the errors in 
received location parameters can be tolerated or not until 
computation of the geotag.  The entropy loss of this 
construction is tlogN.  This results in the effective tag 
length is (n-t)logN.  Thus, Hamming metric fuzzy 
extractors improve geotags’ reproducibility at the expense 
of their entropy. 
 
Secret Sharing Based Fuzzy Extractor 
 
The third construction of fuzzy extractor is based on the 
idea of secret sharing.  The scheme is a method of sharing 
secret S among a set of n participants.  For any subset of k 
(k ≤ n) participants, the secret S can be reconstructed.  But 
a subset of less than m participants will fail to reconstruct 
S.   
 
The distance metric in this construction is also Hamming.  
The input to the fuzzy extractor is quantized location 
vector qx.  The first step of construction is to create a 
polynomial f(x), such that f(i) = qi, ∀ i = 1, 2, …, n.  The 
generation and reproduction procedures are as follows 
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If knqqdis xx −≤)',( , the polynomial f(x) can be 
reconstructed with the assistance of P thus the geotag T 



can be reproduced, such that T’=T.  The effective geotag 
length is klogN. 
 
Combination Use of Fuzzy Extractors 
 
We design the Euclidean metric fuzzy extractor to adjust 
the errors introduced by random noises and seasonal 
biases.  The RS and secret sharing based fuzzy extractors 
can be used to reproduce geotags while location 
parameters are missing due to offline transmitters.   
 
As noises and biases are always presented in RF signals, 
Euclidean fuzzy extractor should be applied all the time to 
minimize the impact of signal temporal variations and 
guarantee the reproducibility of geotags.  Unlike noises 
and biases, errors due to missing parameters are 
infrequent.  Users have their choices to use which fuzzy 
extractor.  A combination use of Euclidean metric and 
Hamming metric fuzzy extractors can achieve more 
robustness in tags but the tradeoff is more entropy loss.    
   
Reproducibility Analysis 
 
In this section we examine and compare the performance 
of three fuzzy extractor constructions.  The evaluation is 
based on the user’s FRR, the attacker’s successful rate 
FAR, and the entropy loss.   
 
All the three constructions improve the consistency of 
location parameters, thus reducing the geotag FRR.  
Users’ false reject depends on the variations of the 
parameters, the selected quantization step Δ, and the 
quantization offset that is, how far off are the received 
parameters from the center of the quantization grid.  The 
most desired scenario is the distribution of the parameter 
is exactly in the middle of the quantization grid (offset = 
0) whereas the worst case is that the distribution lies on 
the boundary of the grid (offset = 0.5Δ), shown in Figure 
7.   
 

 
Figure 7.  Quantization scenarios: best (left); worst (right) 

 
a) Euclidean Metric Fuzzy Extractor 
 
We first examine how the reproducibility of geotags 
improves using the Euclidean metric fuzzy extractor.  The 
analysis is illustrated in Figure 8.  The x-axis is the 
quantization steps in terms of standard deviation σ and 
the y-axis is the estimated FRR.  The tag is computed 
from the triple (TD, ECD, SNR) using the seasonal data 
from four west coast stations.  As a result, there are 11 
different location parameters. 
 

To estimate FRR we take the first day of the 90-day data 
as calibration to compute a geotag and the data from the 
rest of 89 days for verification.  The experimental FRR is 
the number of data points, in which the geotags are 
matched with the computed tag on day one, divided by all 
the data points in 89 days.   We observe that the estimated 
FRR is reduced by 84% after applying the Euclidean 
metric fuzzy extractor.   
 

 
Figure 8. Euclidean metric FE performance improvement 

 
From the mathematical analysis the Euclidean metric 
fuzzy extractor rounds off the location measurements at 
verification step to the measurements at calibration step.  
A geotag can be reproduced when the offset between the 
two measurements is less than a threshold, Δ/2.   
 
b) RS-Based Hamming Metric Fuzzy Extractor 
 
In practice, multiple parameters are used for the 
robustness and security strength of geotags.  More 
location parameters provide more information entropy, 
better resolution, and increase the difficulty in predicting 
a geotag.  However, one drawback is that the FRR of the 
system is increased.  The reproducibility comparison with 
and without a Hamming metric fuzzy extractor is 
illustrated in Figure 9.  Both cases use Euclidean metric 
fuzzy extractor to ensure data lying in the middle of the 
quantization grids.  We use 15 parameters to compute a 
geotag and estimate FRR in this analysis thus n = 15.  The 
overall FRR of Euclidean metric fuzzy extractor can be 
estimated as 1-∏ −=

n
i ip1 )1( , where pi is the error rate of 

one parameter or symbol error.  We choose the number of 
errors t can be corrected in Hamming metric fuzzy 
extractor as 2.  This results in that k = 11.  The solid lines 
represent the analytical analysis while the dots are 
estimated using the same seasonal data mentioned in the 
previous section. 
 



 
Figure 9. Performance of RS-based fuzzy extractor 

 
 
PATTERN CLASSIFICATION 
 
To improve the spatial decorrelation geotags and 
minimize the false reject rate introduced by quantization, 
we develop a new geotag generation algorithm using 
pattern classification. 
 
Pattern classification [13] is the concept of assigning a 
physical object or measured data to one of the pre-
specified groups, called classes, using a priori knowledge 
or statistical information.  The patterns are the evaluated 
final decision from classifiers and represent the 
characteristics of features.  Mathematical models are used 
as the theoretical basis for the classifier design.  In 
classification, a pattern is referred to as a pair of variables 
{x, ω}, where x is a collection of features and ω is the 
concept associated with the features, also called class 
label.  
 
The quality of features is related to the ability to 
discriminate measurements from different classes.  Our 
goal is to maximize the differences between classes and 
minimize the inter-class scatter with the extracted 
decision rules from measurements, thus assigning class 
labels to future data samples. 
 
Various classes of classification algorithms have been 
developed and successfully applied to a broad range of 
real-world domains.  It is essential to ensure that the 
classification algorithm matches the properties of 
collected data, and to meet the needs of the particular 
applications.  In this paper we select three classifiers—
linear discriminant analysis (LDA), k-nearest neighbor 
(kNN) and support vector machines (SVM)—to 
implement and generate a geotag.     
 
Linear Discriminant Analysis  

 
LDA is a traditional feature extraction method that aims 
for a transformation matrix that provides the optimal 
separation of multiple classes [13].  Data of all different 
classes are projected onto a subspace in which the data of 
different classes are as far apart as possible, whereas the 
data of the same classes are as close as possible.  The 
optimal projection can be obtained by simultaneously 
minimizing the within-class scatter matrix norm and 
maximizing the between-class scatter matrix norm.   
 
Fisher’s linear discriminant is the classical example of the 
linear classifier for two classes [14].  The between-class 
and within-class scatter matrices SB and Sw are defined by 
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where xij indicates the jth training sample in class i, c is 
the number of classes, li denotes the number of training 
samples in class i, M is the total number of training 
samples, μi is the mean of the training samples in class i, 
and SW denotes the covariance matrix of samples in class 
i. 
 
The generalized Fisher criterion is defined by  
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where w is the generalized eigenvectors of SBW = λSWW 
corresponding to d largest eigenvalues. 
 
k-Nearest Neighbor  
 
The kNN classifier is a method for classifying data based 
on the distance or closeness to the training samples in the 
feature space.  A similar idea for geotag generation was 
proposed in our previous study under the name nearest 
neighbor method (NNM) in [15].     
 
The method relies on training samples about matching 
probabilities to consider the k-nearest neighbor rule [13].  
The class labels are random variables and independent 
from each other; each has the probability of P(ωi|x).  The 
kNN rule selects ωm with probability P(ωm|x) if a majority 
of the k nearest neighbors have a label of ωm.  The value k 
is a design parameter, that is, the probability to select ωm 
is larger if the value of k is greater.  Large k reduces the 
impact of noise and produces smoother decision 
boundaries, but requires higher computation power.  
When k=1, kNN becomes the nearest neighbor method. 
 



Support Vector Machines 
 
SVM aims to minimize the structural risks.  It not only 
classifies all the training samples correctly, but maximizes 
the margins between different classes.  The problem of 
overfitting, which degrades the generalization ability, 
might occur while maximizing the classification 
performance.  In our problem, high generalization ability 
results in a low FRR.  By controlling model complexity, 
the simplest model that explains data is preferred to avoid 
overfitting [16].  
 
Let M n-dimensional training samples x belong to two 
classes.  With linearly separable data, the decision 
function, also referred to as the hyperplane, can be 
defined as 
 
 ,)( 0wxwxg T +=   (14) 
 
where w is an n-dimensional vector and w0 is a bias term.  
The problem of deciding the optimal separating 
hyperplane can be formulated as 
 

 ,
2
1)(  minimize 2wwJ =  (15) 

 Miwxwy i
T

i ,...,2,1,1)(  subject to 0 =≥+ . 
 
If the training data are not linearly separable, the 
computed classifier may not have high generalization 
ability even with optimal separating hyperplanes.  As a 
result, to enhance linear separability, the original data are 
mapped into a higher dimensional space in which data are 
more linearly separable. 
 
While the SVM classifier maximizes the generalization 
ability, it is vulnerable to outliers due to the use of sum-
of-square errors.  Outliers should be mitigated before 
training to prevent their effects.  A margin parameter C 
controls misclassification errors.  A large value of C 
results in small hyperplane margin and good 
generalization ability, thus suppressing misclassification 

errors, whereas a small value of C results in large 
hyperplane margin and more misclassification errors. 
 
Classifier-based Geotag Generation 
 
To develop an effective geo-security system using pattern 
classification, it is essential to acquire a thorough 
understanding of the input feature space and develop 
proper mapping of such feature space onto the output 
classification space. The machine learning approach we 
proposed adopts representative statistical models to 
extract the characteristics of patterns in the feature 
domain. Different machine learning models should be 
selected based on the perspective of applications. 
Practically, the machine learning models have been 
adopted to construct a robust information processing 
system for other authentication systems, such as 
biometrics. The technique is potentially useful in a broad 
spectrum of application domains, including but not 
limited to biometrics and geo-security. 
 
The dimension of data is the number of random variables 
that are measured on each observation.  A higher 
dimension of data, or more features to compute a geotag, 
results in high spatial discrimination in a geo-security 
system, as well as total information entropy in a geotag.  
In practice, however, the added features may actually 
degrade the geotag reproducibility or reliability of the 
system, which significantly depends on the training 
sample size, the number of features for geotag generation, 
and the algorithm complexity.  Such a phenomenon is 
referred to as the “curse of dimensionality.”  
Dimensionality reduction, which constructs a low-
dimensional representation of high-dimensional data, is a 
means to avoid the curse of dimensionality and improve 
computational efficiency, classification performance, and 
the ease of modeling. 
 
Figure 10 illustrates how to generate a robust geotag 
using pattern classification.  The system also works in two 
steps: calibration and verification.  Both steps involve 
data collection, signal processing, feature extraction, 

Figure 10. Pattern classification-based geotag generation



dimensionality reduction, and classification.  At 
calibration, a model is determined based on the training 
data.  The model should be saved for future classification 
at the verification step.  The geotag Ti associated with 
location i is obtained from the class label ωi, such that Ti 
= f(ωi), where f(·) is a mapping function.  An example of a 
mapping function can be a hash function, which is a 
fundamental block of many cryptographic algorithms.  All 
of the computed geotags will be stored on the database.  
At verification, the developed model is applied to classify 
the reduced dimension data; a new geotag is computed 
using the same mapping function from the extracted class 
labels.  The matching algorithm to decide whether the 
computed geotag is authentic or not, is the same as the 
one for the quantization-based geotag matching.   
 
Experimental Results 
 
This section evaluates LDA, kNN, and SVM-based 
geotags in terms of spatial discrimination and geotag 
reproducibility using multiple Loran data sets.   Spatial 
discrimination or decorrelation is significant to the 
security level of a geo-security system.  A geotag with 
high spatial decorrelation ensures that users at different 
locations with small separation can achieve different 
geotags, thus lowering FARs.  The system reliability 
depends on geotag reproducibility, and is quantified using 
FRR. 
 

 
Figure 11. Test locations in a parking structure at Stanford 

University 
 
The first data set was collected at three test points in a 
parking structure at Stanford University to examine the 
three classifiers.  A visualization of the three locations in 
green markers is shown in Figure 11. 
 
The same features – TD, ECD, and SNR – from four 
West Coast stations are used to derive a geotag.  As a 
result, the input location feature vector is 11-dimensional.  
A linear dimensionality reduction algorithm is applied to 
lower the input vector dimension to two to achieve better 
spatial decorrelation.   
 
a) LDA 

 
The two-dimensional data [x1, x2, x3] that represent three 
locations are labeled classes 1, 2, and 3 and plotted in 
Figure 12.  The estimated classifier is visualized as a 
separating surface, which is piecewise linear.  The input 
data were trained using the Perceptron learning algorithm, 
which minimizes the distance of misclassified points to 
the decision boundary.  The algorithm is an iterative 
procedure that builds a series of vectors [w; w0] until the 
inequality condition is satisfied.  The inequality is 
represented as 
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There is more than one solution when the input data are 
separable.  The final solution depends on the initial vector 
[w; w0](0), which can be selected arbitrarily.  The 
algorithm does not converge when the data are not 
separable. 
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Figure 12. Multi-class linear classifier trained by the 

Perceptron algorithm 
 
b) kNN 
 
The best choice of k depends on the input data; large 
values of k reduce the effect of the noise.  The decision 
boundaries of the case k=8 are plotted in Figure 13.  The 
algorithm is easy to implement but computationally 
intensive, especially when the training data size grows.  
Euclidean distance is used to measure the closeness 
between samples. 
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Figure 13. The decision boundaries of kNN, k=8 

 
c) SVM 
 
As mentioned earlier, SVM is considered as an 
optimization problem.  To solve the optimization, 
Sequential Minimal Optimization (SMO) is applied.  The 
One-Against-One (OAO) decomposition is used to train 
the SVM classifier.  An input parameter, kernel argument, 
controls the size of the hyperplane margin, thus adjusting 
the misclassification errors. 
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Figure 14. Multi-class SVM classifier by OAO 

decomposition 
 
d) Spatial Discrimination 
 
Another data set was collected in the same parking 
structure to evaluate and compare the spatial decorrelation 
of different classifiers. Eleven test locations aligned in a 
straight line were chosen with a separation of three 
meters.  The same 11 location-dependent parameters are 
the inputs to the geotag generation algorithm.   
 
The performance metric for spatial decorrelation is FAR.  
The first test point was selected as a master location, or an 

authentic user, while the rest of the test points are seen as 
attackers.  Three different geotag generation algorithms – 
SVM classifier-based, kNN classifier-based, and 
quantization-based – are compared; the estimated FARs 
are illustrated in Figure 15.  The result indicates that the 
kNN classifier-based geotag has the best discrimination or 
spatial decorrelation, whereas the quantization-based 
geotag has the worst, since the error rate decreases slowly 
as the attacker moves away from the master location. 
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Figure 15. FAR comparison of different geotag generation 

algorithms 
 
 
CONCLUSION 
 
We proposed location-based security services using RF 
signals in which location is used as a validation to restrict 
or deny certain actions in security applications.  Geotags 
are computed from location information that is obtained 
from a location sensor.  The geotag is not a replacement 
but builds on the conventional authentication schemes.  
This location-based service can be applied to many 
applications, such as Loopt, DMP, inventory control, and 
data access control. 
 
We developed fuzzy extractors, which are the error 
tolerant algorithms to recover secret information from 
noisy location data.  A Euclidean metric fuzzy extractor 
was proposed to deal with noise, biases and quantization 
errors to achieve high reproducibility of geotags.  The 
Reed-Solomon based and secret sharing based fuzzy 
extractors were designed for the scenario in which RF 
transmitters are offline.  One drawback of Hamming 
metric fuzzy extractors is the entropy loss in the 
computed geotags.   
 
Classifier-based geotag generation algorithms were 
proposed to achieve high spatial discrimination.  The 
pattern classification uses machine learning techniques 
that improve not only the spatial decorrelation of 
computed geotags but also users’ convenience.  The 



location data can be trained automatically based on the 
classifiers.  The three classifiers proposed on location data 
are LDA, kNN, and SVM. 
 
Real location data were used to evaluate the performance 
of the classifier-based geotag generation methods in terms 
of FAR and FRR.  According to the comparison result, 
both kNN and SVM classifier-based methods can result in 
good spatial discrimination.  Future study includes 
investigating other effective classifiers to improve the 
performance of geotag generation methods. 
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